Prospective Undergraduates | College of Engineering

Prospective Undergraduates

If you're smart and brimming with big ideas, Georgia Tech's College of Engineering might be the place for you. We have top-ranked programs in all kinds of engineering, and you'll love experiencing college life at our Atlanta campus. Dream it, design it, do it is our motto.

Why choose Georgia Tech's College of Engineering?

Students studying outdoorsWhether you want to cure diseases, build computers, or make cities more sustainable, you'll find a program to fit you at the College. Our undergraduates can choose from the 11 top-ranked majors listed below, but part of what makes our programs so valuable is that your education won't be confined to the classroom.

Almost half of Georgia Tech students have been abroad with us by the time they graduate, and we encourage undergraduates to build their resumes through research, internships and co-ops. In Fall 2016, 25% percent of our undergraduate engineering students participated in our co-op program, which gives you work experience in your field for three tuition-free semesters -- all while earning a paycheck from your new employer. And back here on campus, you can pick from hundreds of student clubs and intramural sports teams. Or, just spend some time hanging out in Atlanta, the diverse metropolis we love to call home.

When you graduate, you'll be ready for any career path you choose, and you'll have a degree recognized by top employers around the world. The starting salary for a College of Engineering graduate is about $65,000.


How much will it cost?

Georgia Tech offers its students excellent returns on their investments, and the Institute awards undergraduates more than $105 million in need and merit-based aid. If you are accepted to Tech, advisors in the Office of Scholarships and Financial Aid (OSFA) will work with you to make your degree attainable. A good place to explore your options, determine what aid you're eligible for, and learn how to apply for aid is OSFA's step-by-step guides.

Freshman Cost of Attendance 2016-2017

  Georgia Residents Non-Georgia Residents
Tuition $9,812 $30,004
Required Student Fees $2,400 $2,400
Books/Supplies (estimate) $800 $800
Freshman Housing Allowance $6,488 $6,488
Freshman Meal Plan Allowance $4,700 $4,700
Personal Expenses (estimate) $3,200 $3,200
Average Loan Costs $60 $60
Total Per Year (2 semesters) $27,420 $47,612


How do I apply?

Prospective undergraduates apply to Georgia Tech through its central admissions office. There, you can learn about application deadlines, schedule a campus visit, and find statistics on our current freshman class.

Apply Through the Admissions Office

The best way to learn more about the College of Engineering is to visit Georgia Tech yourself. You can schedule your visit through Tech's admissions office.


Life in Atlanta

Atlanta is the hub of the South and an exciting place to spend your college career. Learn more about our home city, and don't plan on getting bored.


Tour Our Labs

Take a look at the amazing research and fabrication facilities our undergraduate students have access to.


Meet Our Students

Twins Brittany (electrical engineering) and Erica (aerospace engineering) explain why they chose Georgia Tech and how it has worked out for them.

The Guggenheim School of Aerospace Engineering boasts one of the oldest and largest aerospace programs in the country. Whether you want to build and fly all types of aircraft or dream of going into space, the School's focus on problem-solving can propel you into a rewarding career with many top aerospace firms and government-research labs.

This interdisciplinary field integrates engineering and life sciences to support the prevention, diagnosis, and treatment of disease. Biomedical engineers often serve as integrators in multidisciplinary teams of engineers, scientists, and healthcare professionals in the medical device and biotechnology industries, as well as at government regulatory agencies. Georgia Tech and Emory's program challenges students with practical, hands-on problem-solving and design experiences throughout the curriculum.

Chemists discover and create new compounds, but it’s chemical engineers who turn them into products that people need and use. Chemical and biomolecular engineers are developing frontier technologies in drug design and delivery, biotechnology, nanotechnology, alternate energy resources, and environmentally neutral manufacturing. In these fields and many others, chemical engineers provide the intellectual capital that powers today’s global enterprises.

The School of Civil and Environmental Engineering prepares people who will invent the technologies of the future and create solutions to challenges we haven’t even imagined yet. Established in 1898, the School is now among the largest civil and environmental engineering programs in the country. Students on the civil track train to tackle projects like roads and bridges, sure, but they also work on technologies for green buildings, strategies that help us recover from disasters, and projects to alleviate poverty.

Electrical  and computer engineering play central roles in the development of new products and technologies. Electrical engineering is at the core of just about every technology, which is why electrical engineers’ agile solutions to real-world problems and flexible skill sets are always in high demand. Our students advance the modern world by harnessing the power of electricity to build devices and systems, from nanoscale computer chips to multinational communications systems. Computer engineering spans across the disciplines of electrical engineering and computer science and involves designing, programming, and evaluating computer systems to continually improve performance and speed. Computers play an essential role in everyday life, from the computer system that controls a car’s digital displays to the tablet that we use to download our music, books, and games. 

Industrial engineers design and improve systems that use people, machines, information, materials, and energy to make and deliver products or provide services. They improve system performance by solving problems whose outcomes are influenced by complicated and uncertain interactions. If you are thinking about a career as an industrial engineer, the Stewart School of Industrial & Systems Engineering (ISyE) is a natural place to begin your career path.

Materials science and engineering (MSE) focuses on the design, selection, and development of materials. It is a field that deals with “stuff” -- the metals, ceramics, polymers, and composites that surround us. It looks beyond the question of what materials these things are currently made from and imagines what they should be made from.

Mechanical engineering (ME) is the broadest of the engineering disciplines, combining principles from mechanical systems, thermal systems, manufacturing, and design. Thanks to their creativity and multidisciplinary skill set, mechanical engineers work in virtually every industry. They are critical to the transportation industry, working on everything from the development of hybrid and electric cars to autonomous cars and underwater vehicles.

  • Think that Georgia Tech students do nothing but study? You might be surprised.
  • CoE encourages students to broaden their interests with an academic minor.