
Engineering researchers at the Georgia Institute of Technology and the University of Alabama have received a $2.5 million grant from the U.S. Air Force Office of Scientific Research (AFOSR) to conduct fundamental research into the ways in which plasmas interact with the walls of the structures containing them. The research will also examine potential improvements to materials used for the walls.
The five-year research program could lead to improvements in a broad range of areas, including higher performance satellite thrusters, improved tubes for Department of Defense radar and communications systems, more efficient high-intensity lamps, and new plasma deposition and spray-coating processes.
The researchers will utilize new analysis techniques, including a terahertz-frequency laser for non-intrusively studying the plasma sheath, which is the portion of the plasmas that interacts with the wall. The researchers will use atomic probe technology to study how the plasmas -- a state of matter that contains ionized particles -- interact with and are affected by the walls. Modeling and simulation techniques will also help predict how plasmas may interact with improved wall materials.
"In these systems, the plasma is dumping energy into the wall, and the wall may be giving back some particles or energy that affect the plasma," explained Mitchell Walker, associate professor in the Georgia Tech School of Aerospace Engineering. "There is a dance between the plasma and the wall that needs to be understood so we can improve the materials across a range of applications."
Improving the wall materials will also depend on detailed knowledge of how the plasma affects them. Researchers will also use modeling and simulation techniques to predict, based on the experimental data, how a broad range of materials would interact with the plasmas.
