waste water container delivery photo

From Wastewater to Farm-Fresh Produce

November 8, 2020

New facility arrives on campus as a part of Dr. Yongsheng Chen’s USDA-funded pilot

Every day, an estimated 34 billion gallons of wastewater is processed in treatment facilities across the country, according to the EPA. Now, some of that wastewater will be treated right on campus next to the Center Street Apartments and eventually used to grow fresh produce.

In 2018, Youngsheng Chen, professor in the School of Civil and Environmental Engineering, and his research team received a $5 million grant from the USDA to create a pilot project for wastewater treatment.

The most recent progression of Chen’s pilot project is the implementation of two shipping containers on campus next to the Center Street Apartments, which arrived last month. One container will act as a wastewater treatment facility, and the second will host a mini-farm that the team will use to grow lettuce with the newly treated water.

“The goal of our pilot project is to resolve complex environmental issues more effectively and more sustainably using systems-level thinking. We aren’t dealing with traditional farming either – we are working to create agricultural technology to feed the planet in a time of exponential population growth”  - Youngsheng Chen, lead PI on the project and director of the N.E.W. Center

Early photo from pilot project of plant growth

Early photo from pilot project of plant growth

Abigail Cohen, an Environmental Engineering Ph.D. student, is a graduate research assistant on Chen’s team who oversaw the arrival of these retrofitted laboratories on campus. Cohen explained how the new treatment facility and mini-farm are bringing the team closer to their ultimate goal with the pilot project.

“We want to move away from conventional fertilizer inputs for agriculture and wastewater treatment, as well as reduce the amount of energy and environmental impact that goes into farming and create a more circular sanitation food process,” said Cohen.  

Currently, conventional wastewater treatments use the method of aerobic digestion, meaning that large amounts of air are pumped into big water tanks to push out the solids and organic matter in the water. This aerobic method not only requires high amounts of energy, but it also creates high amounts of sludge from the waste, which is often incinerated or dumped into landfills.

In comparison, the Chen’s team plans on using an anaerobic membrane biological treatment to break down the organic matter in wastewater. The amount of biomass that is generated from an anaerobic digestion process is 90% less than aerobic, meaning it will result in a smaller footprint in waste generation.

The team, which currently includes 12 undergrads, nine grad students and three post-docs, is also trying to address eutrophication – the process of fertilizer entering marine ecosystems whether through agricultural runoff, dumping from wastewater facilities, or other means.

The combination of eutrophication, wastewater treatment and artificial intensive agriculture leads major burden on the ecosystem. The team hopes that in the long run, the pilot will have far-reaching impacts on natural ecosystems, However, their present focus is on getting the two new containers operating.

Although these containers will primarily serve as the laboratories where the pilot research will be conducted, the facilities themselves are a cutting-edge display of technology as they represent how wastewater treatment can be conducted at a local, sustainable level rather than having to be transported to larger, pollution producing facilities.

“Our team wanted to display the containers prominently alongside Tech’s sustainability hub that includes the eco-commons and the Kendeda Building, which are quickly becoming a focal point for campus sustainability. We wanted [the containers] to be able to be co-located with some of those other initiatives.” - Abigail Cohen, environmental engineering Ph.D. student on Chen's team

For now, the lettuce produced using this anaerobic process will be treated as bio-hazard material and discarded. As the pilot project continues to progress, the team aims to eventually grow produce that is up to FDA standards for consumption.

The large interdisciplinary team working on the project speaks to the wide range of engineering and public policy needed to address sustainability issues, particularly when it comes to waste water treatment. In addition to the USDA grant, the pilot project has received significant funding from Georgia Tech for facilities and build field sites.

“This type of collaborative research sets Georgia Tech apart as a leading research institution,” said Chen. “With this pilot project, we are committed to creating a more resilient and sustainable society, while at the same time revolutionizing engineering education to train future generations on agricultural technology.”

inside the shipping container (photo)

Inside the newly delivered shipping container - soon to be turned into labs. 

Chen and team posed in front of a poster (photo)

Chen and a few of his team members in 2019. 

Recent News

closeup of the StrideLink device on a shoe

CREATE-X Team Makes Big Strides with New Wearable Technology

StrideLink has introduced a new gait analysis device to improve current physical therapy practices
Jan 18 2022

Six Georgia Tech Faculty Named IEEE Fellows

Six Georgia Tech faculty members were named IEEE Fellows, effective January 1, 2022.
Jan 18 2022
Lunar Flashlight spacecraft

Small Spacecraft Will Scout Ice Formations on the Moon

Georgia Tech's first lunar mission expected to launch this semester
Jan 12 2022
large-scale rubber material

Rubber Material Holds Key to Long-lasting, Safer EV Batteries

New study suggests rubber electrolytes solve common EV battery problems, such as slow lithium-ion transport and poor mechanical properties
Jan 12 2022
image of small pieces of municipal solid waste

CEE Researchers Awarded $1M to Develop Technology for Converting Trash into Fuel

Researchers from Georgia Tech’s School of Civil and Environmental Engineering have received $1.1 million from the U.S. Department of Energy to create equipment to efficiently convert non-recyclable municipal waste into jet fuel. 
Jan 12 2022